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The dynamics of vortex structures and states of current in 
plasma-like fluids and the electrical explosion of conductors: 
I. The model of a non-equilibrium phase transition 

N B Volkov and A M Iskoldsky 
Russian Academy of Science, Ural Division. Institute of El%tmphysics; 
34 Komsomolskaya St, Yekaterinburg 620219, Russia 

Received 4 Septemter 1992, in final form 20 September 1993 

Abstract. A set of equations according to which the conducting medium consists of two fluids- 
l a m i w  and vortex-has been obtained by uansforming the MHD equations. In a similar way, an 
elecuonic fluid is assumed to consist of a laminar and a v m x  fluid. This system allows one to 
study the formation and dynamics of large-scale hydrodynamic AuctuaIions. From Ihis model, 
a model of a non-equilibrium phase Wansition belonging to a class of the Lorenz-type models 
has been developed Vonex s m c W  resulting in the increase in an effective resistance of the 
conducting medium and the intermption of current have been shown to appear even at consfant 
uansport ccefftcienu in a laminar electronic fluid. critical exponenu of the order parameters 
(amplitudes). which for a d k c t  ulrrent coincide with the critical exponenu in the Larenz model. 
have been found. A spatial scale of the smcture desrrited by the theary is in good agreement 
with experiment A funher evolution of vortex smctues  has been shown to occur by splitting 
the spatial scale. A similarity. according to which the following sequence of splitting takes 
place: ko+kl = 0.SkO-rkz = 2ko-rk3 = 2k& etc. has been hypothesized. 

1. Introduction 

The present series of three papers describes the dynamics of vortex structures and states 
of current in plasma-like fluids as a magnetohydrodynamic (m) approximation. Vortex 
structures are large-scale &ydrodynamic) fluctuations, obeying the condition kL > 1, where 
k and L are, respectively, the wavenumber and the characteristic size (for instance, the 
sample size). Criteria for the classification of fluctuations into small-scale (kinetic) with 
kL << 1 and large-scale are discussed in [I]. In addition, a local thermodynamic equilibrium 
(LTE) is valid, and local kinetic transport coefficients (U is the electric conductivity, K is the 
thermal conductivity, t )  is the shear viscosity) are still determined by kinetic fluctuations. 

Below. in section 3, and also in the second paper of the series, we show that even in the 
case of a constant transport coefficient, the emergence of vortex hydrodynamic structures 
results in a spontaneous breaking of a symmetry of a laminar, in the initial state, ‘electron’ 
fluid and the appearance of vortex current structures. As a consequence, the current in a 
cylindrical conductor is intermpted, i.e. an effective resistance of the conductor Rfl+cs and 
a region of negative differential resistance appears in the U1 characteristic. This process is 
singular in time and for its realization it is necessary that the extemal electric circuit should 
be Supercritical to some extent, which is a characteristic property of a non-equilibrium phase 
transition (NPT) 121. 

Section 3 presents a simple NFT model for a cylindrical conductor. To develop it we 
used the set of magnetohydrodynamic equations (MHD) obtained in section 2. We also 
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showed that the formation of vortex structures in the medium, from the view point of an 
external observer results in an effective alteration in kinetic coefficients, and local kinetic 
coefficients determined by small-scale fluctuation as before. 

In the second paper of this series we used computer simulation to study the dynamics 
of vortex sbuctures and current states in electrophysical systems where the NFT model from 
section 3 is used as a model of a nonlinear element (NE). 

In the third paper we discuss and give a qualitative explanation of the electrical explosion 
in conductors (EEC) [3,4], which is an example of a phenomenon where vortex structures 
play, in our opinion, the dominant role (see [51, which draws attention to the analogy between 
initial stages of EEC and the turbulence in an incompressible liquid). During an electrical 
explosion the conductor first breaks down into transverse strata (axial structurization) and 
then it expands forming a low-temperature plasma with a condensed disperse phase (CDP) 
by the end of the explosion. It has been established experimentally [4] that the conductor 
stratification takes a time that is less than acharacteristic hydrodynamic time; in particular, it 
is less than the sound time, rs = roc,-' (ro, ci are the conductor radius and the sound velocity, 
respectively). The above fact, and other experimental evidence previously considered 
anomalous, find a natural explanation in the framework of our model. 

N B Volkov and A M Iskoldsky 

2. Mathematical model 

For the initial mathematical model we use hydrodynamic equations of a conducting liquid 
and Maxwell equations [6], restricting ourselves to the MHD approximation. we assume that 
there is LTE in the system. As noted in 171, physical processes resulting in the infringement 
of Lm make a major contribution to the bulk viscosity; therefore, proceeding from the 
assumption of LTE, the bulk viscosity is not considered in the set of equations below (the 
existence of large-scale vortex excitations in the medium leads to physical effects that can 
be explained as the influence of an effective bulk viscosity). 

In this case the set of MHD equations becomes 

ap - +(U. V)p + p(V.  U) = 0 
at 

= - &(V.  U )  + $([V,  HI)* + +Sp(S * (V 8 u ) ~ )  + (V * KVT) 

1 aH 
[V,  E ]  = 

c at 

4n . tv, HI = -3 

(V .H) = 0 

(V . E )  = 4nspe 

C 
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where p. U, T, P, E ,  H ,  Sp, and j &e, respectively the local density, the hydrodynamic 
velocity, the temperature, the pressure, the electric intensity, the magnetic intensity, the 
density of a non-balanced electric charge (in the MHD approximation (p.) = 0; equation (7) 
is used below to find the deviation 6pe from the mean charge value induced by an effective 
polarization of the conducting medium) and the current density. To find the latter, we use 
the generalized Ohm's law in the simplest form 

j = u  E + - [ u , N ]  (8) 

P, = uaP/ap),;  S = 2q(U- 3 - ' ( ~  . u)i) is the tensor of a viscous stress, U = 
0.5((V c3 U) + (V c3 u)~), i is the unit tensor (the symbol T denotes a transposition; is 
the intemal (scalar) vector product, c3 is the tensor product of vectors; [a, 61 is the vector 
product of vectors a and b; V = Viei is the gradient operator); cp is the heat capacity per 
unit mass; U, = c2(4xu)-' is the magnetic viscosity, c is the velocity of light. 

To close the set of equations (I)-@), it is necessary to specify initial and boundruy 
conditions. In our case, it is sufficient to set the value of a normal 

~( = ' 1~ 

P - & = 0 

Snr = o  (10) 

(9) 
and a tangential 

component of the stress tensor and the value of the magnetic intensity on a free boundary 
between the medium and vacuum (& = S-n, where n is *e normal vector to the conductor 
surface). 

We rewrite (lH8) in the form where large-scale vortex excitations can be explicitly 
represented. It is remarkable that a significant role in their formation is played by a 
surface that restricts the volume occupied by a continuous conducting medium. This 
surface enables distinguishing vector fields (of hydrodynamic velocity and current density) 
which are connected to themselves inside and outside this volume, or end on the boundary 
(conventionally called 'laminar' and 'vortex' vector fields). 

Actually, let 

u=up+u, (11) 

where up, U, are the laminar and the vortex vector fields of hydrodynamic velocity, 
respectively. We write the motion equation of a vortex liquid in the following form 

1 "-') m + ~ [ [ V . ~ l , H l + V . S ,  (13) 

where P, = H2(8rr)-' is the magnetic pressure: Sw = ZqU,; U, = OS(V 8 U, + (V @ 
udT): P, is the hydrodynamic pressure, the spatial distribution of which is derived from 
the solution of the Poisson-type equation found by using the first relation of (12) in (13) 

A(P, - P,) - V(lnp). V(f, - P,) 

-[Uo. [V, uwll + v- = -V(P - P ) 2 

(14) 
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By substituting (12) into (I), (2) with the consideration of (13), we obtain 

(15) 
ap - + (U, VIP -I- p(V u p )  = -(U,. V)p 
at 

p 2 + V L  (16) 

where P,= P-P,,S,=2q(~p-3-t(V.up)~),Up=0.5(V'8up+(V'8up)T). From 
the viewpoint of an extemal observer the second term in the right-hand side of (16) has the 
physical sense of an effective volume viscosity. 

= -V(P, + Pm) - p(V(u, . U,) - [U,, [V, U,J]) + V *Sp (a: 2 2> 

As is consistent with the second relation from (12). equation (16) has the form 

where x is the effective chemical potential, the spatial distribution of which is derived from 
the Poisson-type equation found by using expressions (12) and (14) in equation (16) 

AX = V .  (p-'(V(P - ~ q (  v .  U p ) )  - (4n)-'[[v, HI, HI 

+ [V, q[V, u,11+ 2(V. up)Vq - 2vq . (V '8 U)') - [.U, [V. Udl) .  
(18) 

In the region of developed large-scale fluctuations the consIsaint equation (18) should be 
used as an effective equation of state of liquid For a homogeneous incompressible liquid 
with q = 0, ]HI = 0 and Iu,~ = 0, the solution (18) has the form x = Pp-'. 

The boundary conditions are rewritten as 

Hence, the existence of large-scale vortex excitations in the liquid results in the appearance 
of back pressure and tangent stress on the free boundary with a vacuum, which prevents a 
change in the shape of the volume occupied by the liquid. 

Vortex current excitations can also appear in plasma-like media, therefore we transform 
Maxwell's equations (4)-(7), taking Ohm's law into account, in the form of (8). Let 
j = j ,  + j,, with 

I, j,, . d s  = I s, j ,  . ds = 0 

( I  is the total current, 
medium). Then 

is the surface restricting the volume occupied by the conducting 
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I [V, E,] -c- - 
at 

[V,  Hpl = 4lrc-'j, (26) 

[V, H,] =4nc-'j,,, (27) 

(V . E p )  + (V . E,,,) = 4nSpe (28) 

( V .  H,) + (V * H,,,) = 0. - (29) 
In the absence of vortex current excitations,'i.e. at lj,l = 0, (V H p )  = 0. Therefore, 

( V .  Hp)  = 0 (30) 

( V - H a )  =O. (31) 

to exclude non-physical solutions, we require that 

Then a set of diffusion equations H p  and H, follows from (21x27)  and (30), (31) 

aHP 
at 
- + (up. V ) H p  ( H p .  V)U,  - H p ( V .  up) 

+ I (Hp.  VU,,, - (U,,, . V)Hpl+ umAHp - [ V V ~ ,  [V,  HplI (32) 

5 + (U, %)H, = (H,  . V ) U "  - H,, , (V.  up) 
at 

+ I (&.  V h P  - (U,. V)H,I + h A H ,  - [VU,, [V, Hull. (33) 
The t e m  between the brackets in (32) and (33) consider the influence of laminar 

and voltex vector fields of the hydrodynamic velocity on the alteration in magnetic fields. 
This influence can be recognized by an external observer as an effective variation in the 
magnetic diffusion factor. It should also be noted that a direct measurement of  the field Ho 
is impossible due to condition (21). However, it .wntributes to an effective voltage drop 
across a conductor, thus determining the total current I (see section 3). 

The energy balance equation (3) remains unaltered, the work of pressure forces to 
expand (compress) the matter being determined by the field up, and local kinetic transport 
factors by small-scale fluctuations. 

Let us make some comments. The equations obtained are a phenomenological set of 
equations for a two-liquid hydrodynamic description of a 'heavy' conducting fluid and a 
'light' fluid of magnetic field. In this framework a simple model of a nonequilibrium phase 
transition (section 3) has been developed and,the dynamics of vortex structures and states 
of current in electrophysical circuits has been studied While deriving (13x18) and (32), 
(33) we did not use additional physical considerations which were beyond the applicability 
of the initial model (1x8). In addition, an essential condition for the consistency of 
motions determined by this system is to satisfy the condition of constraint (18). which 
is similar to the condition of deformation compatibility in elastic theory. From the view 
point of an external observer, characteristics of the field v, can be regarded as additional 
thermodynamic variables which enter a thermodynamic potential as independent variables. 
To describe the dynamics of the latter, it is necessary to derive relaxation-type equations 
[7,8] and to use experimental data for finding a relaxation time. In the framework of the 
field approach developed in this paper, the above problem no longer arises since relaxation 
times will appear only when equations f13), (14) are reduced to relaxation-type equations. 
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3. The model of a non-equilibrium phase transition 

A homogeneous incompressible liquid is used in the development of the NFT model. This 
fluid occupies a region of fixed size (as is shown in [5], it is correct for the initial stage of 
EEC; discussed below is a liquid conducting cylinder with radius ro and length I >> ro). In 
this case Jupl = 0 and the compatibility condition (17) is satisfied identically. Moreover, 
as in [SI. we assume local kinetic coefficients to be constant and consequently we do not 
take into consideration, in a first approximation, the influence of the conductor heating on 
the dynamics of vortex structures and states of current. 

The set of equations (11H16) and (32), (33) is then written in the following form 
(below we do not use the index o since we discuss a vortex fluid; moreover, instead of (32) 
and (33), we use a diffusion equation for the total magnetic field H) 

N B Voikov and A M lskoldsky 

( V  .U) = 0 (34) 

(35) 
au 
at 

(36) 
aH 
at 

- + (U. V)U = -po-IVP + (4lrpo)-'[[V, HI, H] + UAU 

-+(U. V ) H  = ( H - V ) U +  v,AW 

where U = qpo-' is the kinematic viscosity and A is the Laplacian. As follows from (34), 
U = [V,  A] (A is the vector potential of the velocity, which is known to be accurate within 
the gradient of a scalar function; below we use the Coulomb gauge of the vector potential 

We direct the z axis along the axis of the conductor and we make use of the 
azimuthal symmetry, setting U = (U&-, z, t), 0, uz(r, z, r)}, H = (0, H(r, z, t ) .OJ.  A = 
(0, @(r, z, t ) ,  0). From (34) we then find ur = -a@/az,  U, = a(r@)/rar. We look 
for a solution of (36) in the form H ( r , z , t )  = H ~ ( r , z )  + h(r , z , t ) ,  where Hl(r , t )  = 
2i(t)r(cro2)-', i.e. while finding H I  , the current density is assumed to be homogeneous in 
the cross section of the conductor. In this case the boundary conditions for (36) are satisfied 
automatically, since HI (ro, t )  = 2i(t)(cro)-'. Correspondingly, the boundary conditions for 
the field h(r,  z ,  t )  at r = 0 and r = ro are zero: h(0, z ,  t )  = h(ro, z ,  t )  = 0. Applying the 
vector operation [V, 3 to (35) and making use of the above assumptions, we derive a set 
of differential equations in partial derivatives for @ and h 

( V  . A )  = 0). 

a@@ - W2) - _  a(@, A? - @r-')~+ 2(A@ - W2) -~ a@ - 
at a(r, z )  r az 

vu, i ah + R - - -  + ufA(A@ - @r-') - r-2(A@ - 
~ o r o 3  io a z  (37) 

(38) 

R = H o * r 0 ~ ( 2 n p 0 h u ) - ~  = U A  2 2  ro (v,w)-l = Pem2s-' is the Rayleigh number. uA = 
HO(~JCPO)-~'~ is the Alfven velocity, Pe,,, = vArou,-' is the magnetic Peclet number, 
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s = vu,-', HO = ZZo(cro)-l, IO is the characteristic current value d e p d e n t  on the type of 
energy source. For the direct current, i ( t )  = ZO =constant, the set of equations (37), (38). 
as shown in [5]. agrees accurately with the replacement of a Cartesian coordinate system 
by a cylindrical one and the replacement of the heat conduction equation for the diffusion 
of a magnetic field, with the set of Sa l t "  equations [9] in the theory of the Benard 
effect [IO]. 

A second term in the right-hand side of (37) leads to the breakdown of azimuthal 
symmetry (leading to dependence of the fields * and h on q). Below we limit ourselves 
to the consideration of instabilities which do not lead to the breakdown of the azimuthal 
symmetry. For this reason we ignore this term. 

Equations (37), (38) without a second term in the right-hand si& of (37) describe the 
dynamics of large-scale fluctuations in an incompressihle conducting medium. If we make a 
linear analysis of the stability of their solution, we can reveal that it is unstable and we can 
anticipate that the development of the most rapid perturbations is determined by a minimal 
number of modes, in particular by three. 

Let us show that the set of equations (37), (38) can be reduced to the set of three 
nonlinear differential equations that describe the interaction of the three perturbation modes 
(later on we will discuss the plausibility of this suggestion). Similarly to [5,101, we restrict 
ourselves to one perturbation mode for $ and to two modes for h and also, following Lorenz 
[IO], we assume free boundary conditions for @: *(O, z, t) = *(ro. z, t )  = 0. Retaining 
the less significant terms in the Fourier representation of $I and h, we use the substitution, 
which transforms into the Lorenz substitution in case of a Cartesian coordinate system 

In (39). (40) gl = 3.83171 corresponds to the first zero of the Bessel function Jl(x),  
R, = 64g1*n2(b(4 - b))-l is the critical Rayleigh number, b = 4(l + (nkgl-')')-'. 
By substituting (39), (40) for (37). (38), we find a set of ordinary differential equations 
for the X(t), Y ( t )  and Z(t) amplitudes, which coincides with the set of equations (4) 
in 151 at i(t) = Zo = constant (note that in [5] ZJ,(2glrro-') is used for h instead of 
2ZJo(glrr0-~)J1(glrro-~);  this, however, does not transform the system of amplitudes 
obtained in [51, as substitution (216). corresponding to the approximate equality Jl(2.x) Z 
2Jo(x) Jl(x), was actually used in their derivation) 

(41) x = s(-x + ZY) 
Y = Zg'-'X(-z +ng1.-'r1Z) - Y 
Z = -(irgl-'XY + bZ) 

(42) 

(43) 
where the point symbol '" is used to denote the differentiation operator for the 
dimensionless time t = 4g1*b-'~,tro-~, I ( t )  = iZ0- I  is the dimensionless current; 
r1 = R R,-' is the conaol parameter of the model. 

The knowledge of X(t), Y ( t ) ,  Z(r) and l ( t )  allows us to determine paths of particles 
transferring the mass (of 'hydrodynamic' particles, below called atoms) and the current (of 
'conducting electrons'), while solving the motion equation 

Ra = -C,Xc~s(nkZ,)Ji(giR,) (44) 

Z, = C,Xsin(nkZ,) Jo(glRa) (45) 
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and 

Re = dBkrl-'Ysin(nkZ& (gl Re) 

N B Volkov and A M Iskoidsky 

(46) 

(47) 2, = 8[21 +arl-'(JZYcos(nkZ,)J,(g~R,) + 22(J1'(glRe) - Jo'(glR,)))] 
where R,, 2, and Re, 2, are the coordinates of paths for atoms and conducting electrons, 
respectively; C, = 21/2~gl-2; C, = glk-'C,; B = bcHo(16nen,u,,,g12)-'; a = g1n-I; e 
and n. are, respectively, the unit charge and the density of conducting electrons. Since (44t 
(47) determine paths of particles corresponding to every moment of time 5 ,  then in their 
integration the X, Y, 2 and I amplitudes should be assumed to be constant, i.e. systems 
(44). (45) and (46). (47) represent, on the plane (r, z) .  autonomous dynamic systems of 
second order. Moreover, the set of equations (41x43). combined with additional equations 
for the current I ,  is a control dynamic system for sets (M), (45) and (46), (47). Thus we 
distinguish between 'slow' processes, the dynamics of which is determined by system (41)- 
(43). and 'rapid' ones, the dynamics of which is determined by systems (44). (45) and (46), 
(47). Therefore, at certain values of X, Y, 2 and I in dynamic systems (44), (45) and (46). 
(47), one should anticipate bifurcations which can result in a topological rearrangement of 
spatial structures, in particular in a spontaneous breaking of symmetry. 

To find the value of the current in the conductor, we should specify the method of 
calculating the voltage drop across it. Experimentally the voltage drop is measured by 
determining the alteration in a magnetic flux coupled with the conductor U L  = L,/dijdt 
(LN is the extemal inductance of the conductor) and also the Ohmic voltage drop that 
represents an integral of the z component of the electric field on the conductor surface 
E&, z): U R  = so E,(rO, z) dz. Then, with consideration of the boundary conditions, the 
voltage drop across the conductor is 

U ( t )  = U L ( ~ )  + U R ( f )  = ,Lf l Io(C' to)- ' f  + RpoIo(I - (HTi)-IJo'(gi)Z). (48) 

In equation (48) to = roZb(4glZwm)-L is the base time; R@ = i(nro2u)-' is the initial 
conductor resistance. It is evident that to close system (41x433, it is necessary to specify 
an equation (or equations) for determining the current I, the form of which depends on 
a concrete topology of an extemal circuit that serves as a thermostat with respect to the 
dynamic system (41H43). 

I 

4. Discussion 

If we consider that ngl - '  E 1, then equations (41) and (42) agree fully with the first two 
equations in the Lorenz model [lo], and (43) has the sign '-' before XY instead of sign 
'+' in the corresponding Lorenz equation. Thus our model describes NPT, as will be shown 
below. 

Let us find a spatial scale of perturbation in the z direction, which allows us to discuss 
the suitability of the assumption made when deriving (41x43) that the minimal number 
of perturbation modes is three. We make use of the dependence of the critical Rayleigh 
number on the parameter b (see also figure 1): Re = 64glzn2(b2(4 - b))-'. We can see 
that R,+w as b+O or b+4. The case b = 0 corresponds to a shortwave limit, i.e. k = 00 

(A = 0). The case b = 4 corresponds to a longwave limit when k = 0 and A = W. Hence, 
in the latter case, the perturbation spreads over the whole volume occupied by the matter. 
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64k::n2 
I) 

6.00- 

4.00- 

2.00- 

0.00 2.00 4.00 b 

Figure 1. The magnetic Fayleigh number as a function of ihe parameter b. 

In OUT case, a characteristic scale of the problem is the conductor radius ro. Therefore it 
should be expected that the most rapidly developed perturbations are those with A Z ro. 

Actually, R, has a minimum corresponding to the condition dR,/db = 0 b = 813, 
Rc,min = 978.08144. This value of the Rayleigh critical number.corresponds to the 
perturbation with A = rok-' = rongl-1b1/2(4 - b)-"' = 1.15931ro. Respectively, 
rl = 1.0224~ = 6.5088~ 10-410z(c2pou,v)-'. A subsequent perturbation evolution 
is possible in the direction of splitting the spatial scale. In addition, as shown in figure 1, 
the process of splitting the conductor into strata having the size 1 = U (the Rayleigh critical 
number for a perturbation with the wavenumber 0.5k is 1.65 x 103 and, for a perturbation 
with 1 = OSA, it is 1.957 x lo3) is more advantageous at first. This analysis is supported 
by a direct observation of the conductor stratification in EEC experiments [3,4] (figure 2 
(taken from 1111) shows that in the final explosion stage the conductor splits into strata 
with size l, 2 2A). In experiments with copper conductors 0.58 mm in diameter [4], the 
mean distance between the strata was 0.78 mm. According to our model, 1 % 2A = 0.672 
mm, which is in rather good agreement with experiment (we did not use any experimental 
data while calculating A). The consideration of a larger number of perturbation modes 
does not show a significant change in the results of the above analysis, as modes with the 
wavenumber not equal to k have a longer time of perturbance than the dominant mode. 
The fact that Rc,,,,in corresponds to A % ro shows evidence that the model proposed is a 
model of a non-equilibrium phase transition where the hplitudes X(t), YO), Z ( r )  and Z(t) 
have a physical meaning of the order parameters, the interaction of which is described by 
(40443) followed by one or several equations for finding the current 1(t) (depending on 
a concrete topology of an extemal electric circuit). 

Let us analyse the set of equations (41H43) at I = 1 = constant. We have 

(49) 

, k=0.l25k0 

k=O.25k, 
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Figure 2. X-ray pate" of an exploding conductor at different times (from the experiment in 
['W. 

The fixed points of the set (49) ak determined by the condition F(W) = 0 WI = 0. 
W2.3 = {rt1.221[b(l -0.672r1)]'/2; f1.221[b(l-0.672r1)]~/~; -1.221(1-0.672r1)1. One 
can see that at rl > r, = 1.488, the set (49) has no fixed points. The analysis of the solution 
stability shows that at rl < r, the fixed points are stable. The fixed point corresponding to 
rl = r, is a stability boundary (figure 3(a) shows a bifurcation curve for the set (49)). 

The coordinates of the fixed points of the Lorenz model are W, = 0, w2.3 = 
{ i [ b ( r l  - I)]'/*; i [ b ( r l  - 1 ) ] 1 / 2 ;  r, - I]. The critical point of the Lorenz model (rl = 
RR,-' = 1) is also a stability boundary (figure 3(b) shows a bifurcation curve of the Lorenz 
model). One can see that at R R, there are stable steady-state solutions in the Lorenz 
model; a transition from the point W = 0 to any arbitrary point of the phase space being 

rl = R f R, rl = R f Rc 

Figure 3. The bifurcation curves for our model (0). and for the Lorenz one (b). 
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performed via the adiabatic sequence of stable states. A bifurcation, called in the literature 
a supercritical bifurcation (the Hopf bifurcation), occurs at a critical point [12]. 

In our case, the bifurcation is a subcritical one, as at R > R, there are no steady-state 
solutions near the critical point. In addition, any trajectory of the system in phase space at 
R 3. R, shifts the system from the point W = 0 to infinity during a finite time. In literature 
this transition is called explosive [12]. 

- 

The asymptotic behaviour of the solution of set (49) is of a singular character 

x - ai (2, - t1-l Y - az(t, - t)-2 2 -a&* - t)-' (50) 

where a1 = 12.442, a2 = 12.442s-', 9 = -2.442s-1. The Lorenz model has a~similar 
asymptotic behaviour though with different factors to (50); {ai, i = 1,2,3]: al = 2i. 
dl  = -2is. a, = -2s (an imaginary unit in factors a1 and U; indicates a fluctuating 
character in a steady-state solution of the Lorenz model) [13]. 

It is worthwhile coming back to the interpretation of the Rayleigh magnetic number and 
the control parameter rl = RR,-': R = vA'ro'(v,w)-l. Sausage-type MHD instabilities 
are known to be an altemative mechanism when a conductor is destroyed by current, the 
increment of which is YA = f ~ - '  = 2'/zuAro-i ( t ~  is the time for the development of a MHD 
instability) [14]. Then the Rayleigh magnetic number can be represented as a square ratio 
of the times td and f ~ :  R = (tdtA-')' ( td  =rO2(2vmv)-' is the effective diffusion time). For 
I = 1 ,  the equality R = 1.488Rc corresponds to the critical point on the bifurcation curve, 
whereas the inequality tdtA-l > (1.488Rc)'12 = 38.1495 corresponds to the supercritical 
regime in our model. 

On the other hand sausage-type M m  instabilities are known to develop when the 
magnetic pressure P, = ~ ~ ( 8 n ) - '  surpasses the pressure in the medium. Let us estimate 
critical values of the magnetic intensity at a constant current. The first value HCrl is 
determined to correspond to the Rayleigh critical number R, = Hc,i2(2rrp~vmv)-' = 
978.08144: Hml = 78.393r0-~(v,u)'/~. Setfing U E lO"c-', we obtain I fcc]  = 
2.1 x 103r~-iq'/2 Oe. The second value of the critic& field intensity (Hca) is determined 
from the pinch condition H , , ~ ~ ( 8 r r P ) - '  2 1. Setting P 2Z poc,', po Y 10 g c ~ n - ~  and 
cs 2' IO5 cm s-', we obtain H,n = 1.585 x lo6 Oe. Thus, at the conductor radius ro = IO-' 
cm widely used in experiment and the overrated shear viscosity factor q E' 1 P, H,,, < Ha. 

The control parameter r1 = R R,-l = (ffH,l-')* > 1.488. Hence, in our model a 
non-equilihrium phase transition develops under the condition H 2 2.561 65 x lO3r0-'77'/' 
Oe. At ro Z cm and 77 Z 1 P (six!) the following inequality is valid 

~~ 

2.561 65 x lo5 Oe < H < 1.585 x IO6 Oe. 

Let us find the conductor radius (re), when H,1 = Hca = H. We obtain r* = 
1.616 x IO-'qi/' < 1.616 x cm. Since the actual liquid metal viscosity is about lo-' 
P, our calculations are overestimated by at leist an order of magnitude. 

Consequently, the instability described by our model can be referred to as a class of 
magnetohydrodynamic instabilities, with its excitation threshold being sufficiently lower 
than that of ordinary sausage-type instabilities and therefore, to investigate the former, it is 
not necessary, unlike in 1141, to disturb the conductor surface. Moreover, vonex structures 
developed in the conductor during their further evolution are acting on the conductor surface 
to be drawn in, which results in the conductor splitting ,(to describe the initial phase of 
splitting, we suggested a three-mode model [15], similar to (41H43). according to which 
the X, Y and Z amplitudes have a time singularity: X - Y - 2 - (ti - t)-''' and 
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I - (1. - 1)”’; it should be noted that the dynamics of the process in this stage is 
quantitatively similar to the destruction of puperconductivity by a critical current). As 
an additional argument in favour of the transition to splitting, the following can be stated 
at a constant current the power P = U1 has the asymptote P - (1% - t)-’. in splitting it is 
P - (L - 1)’ = constant. Thus, it is more energetically beneficial to split a spatial scale 
than to increase the X, Y and 2 amplitudes preserving the initial value of the scale. 

N B Volkov and A M IskOldSky 

5. Conclusions 

The principal results of the present paper can be summarized as follows: 
The initial model of the magnetic hydrodynamics of a conducting fluid has been 

transformed to the form where the possibility of large-scale structure formations is presented 
in an explicit form; both the ‘heavy’ and the ‘light’ fluid (conducting electrons) consists of 
two fluids: laminar and vortex. The increase in an effective conductor resistance even in 
the case of a constant local conductance is a consequence of the vortex structure formation 
in the electron subsystem (electric current). 

In the framework of the present model, a model of a non-equilibrium phase transition 
has been derived where the motion of a laminar component of a heavy fluid was not taken 
into account and kinetic coefficients were considered as constant, i.e. independent of density 
and temperature. This model can be referred to as a class of the Lorenz model [lo], the 
spatial scale of a vortex structure being in good agreement with experiment [4]. 

The instability discussed in the paper has been shown to belong to a class of 
magnetohydrodynamic instabilities. It is characterized by a threshold current which is at 
least a factor of 10’ lower than that for an ordinary sausage-type instability. There is also 
no need for a disturbance of the conductor surface to study this instability. Moreover, in the 
case of a free conductor surface, the spatial scale splitting has been shown to be inevitable 
as a consequence of the initial vortex structure formation and evolution. 

It should be noted that from the moment when fhe spatial scale starts splitting, the 
model presented by (41H43) loses its applicability. Therefore, our next problem is to 
develop models for a sequence of doubling the spatial scale, mentioned in section 3: 
ko+kl = O.Sko+k~ = UC,+k, = 2kz+k4 = 2 k 3 ,  etc. In the stage ko + kl, as shown in 
[151, we can also confine ourselves to three modes of perturbation. 
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